Finite Element Modeling with ANSYS

Neal Davis, Computer Science, University of Illinois
Course Overview

< Objective: Understand course expectations and policies.
"An FEA program allows an engineer to make mistakes at a rapid rate of speed. (R. Miller)"

This is important, because a popular tenet of current design thought suggests that you should fail often and fail
cheaply—in other words, bring your model in contact with reality as often as you can sustain in order to exploit
the corrections that come from

To a certain extent, I want you to treat everything I suggest in this class as a set of guidelines which can be
explored and challenged. Think of the computational environment as itself empirical—it is often easy for you to
test small hypotheses and craft working problems which can be compared to each other and to reality. Many
questions in the course may thus be answered by the rejoinder—do it/

A Brief Review of the Finite Element Method

< Objective: Understand the underlying computational process of the finite element method.
Solution Process

The basic algorithm for a finite element solution is as follows:

1. Decompose the elements into structures and write a governing equation relationship (such as force-
displacement) for each element.

2. Assemble all of the elements to get the governing equation statement for the entire problem,
Ke=FK_c=F_.

3. Apply the boundary conditions, K*¢ = F*K__*c_=F_*.

4. Solve the resulting linear system_to get the solution cc_.

5. Post-process this result to extract stress, strain, displacement, and other variables of interest.

Mathematically, we proceed a bit differently, but it is easier to see where the foregoing steps arise if you have an
understanding of the four basic forms of the problem: strong S, weak W, Galerkin GG, and matrix M.

S Strong Form
The strong form is the canonical mathematical statement of the boundary-value problem which you are

accustomed to from your previous engineering studies. The governing equations are stated for the domain, along
with boundary conditions.

Given f, g, h, find u(x) such that

d?u(x)
2 +f=0 01
u(l) =g
du
- =_h
dx x=0

d2u(x)dx2+f=001u(1)=gdudx|x=0=—h



W Weak Form

The weak form is an equivalent variational statement of the problem. A solution of S satisfies W, and vice versa.
Integrate by parts to construct the weak form. The weighting functionsw(x) are arbitrary as long as they satisfy the
homogeneous form of the essential boundary conditions: w(x = 1) = 0. Then the weak statement of the problem

is:
For any w(x) such that w(x = 1) = 0, find u(x) such that the following equation is satisfied:
d d d &
/ i w du W) u(x) / & u(x)w()
= —W(X)f(X) + / defw(x) by

/ dx d_w % / dx w(x)f (x) + Aw(0)
| O? dxdwdxdudx—w(x)dZu(x)dx2|x =01-J01 dxd2u(x)dx2w(x)=—w(x)f(x)[x=01 +o1 dxf(x)w(x)byd2u(x)dx2+f=0

d?u(x)
dxz

+f=0

G Galerkin Form

Although the matrix form M is the actual statement of the problem which is solved by the machine, it is the
Galerkin form G which dominates the numerics. At this point, we assume a discretization (a mesh) and make
approximations as to how we will represent the components of the solution.

Discretize the domain and approximate u and w by iiu~ and ww~.

For any w(x)w~(x) such that w(x = 1) = Ow~(x=1)=0, find ii(x)u~(x) such that the following equation is
satisfied:

/ aw d” / dx w)f () + hw(0) =

/ a d” / dx W()f(x) + hiv(0)
0
fO1dxdwdxdudx—fOldxw(x)f(x)+hw(0):>f01dxdw~dxdu~dx:fO1dxw~(x)f(x)+hw~(0)

M Matrix Form

Although the Galerkin form is approximate, we have not yet specified the discretized approximating functions
uu~ and ww~. We will treat these as composed of shape functions ;, which are equal to zero outside of the

interval x; _ | < x < x; 4 1. The form of the shape functions can be varied, but we will here use a linear form:

- Xiog Sx <X
Ni(x) = 4 == xi <x < X -
0 elsewhere

Ni(x)={x—xi—1hixi—1<x<xixi+1—xhixi<x<xi+10elsewhere.
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The given approximating functions use these as a basis:

n+1

() = ) eiNi()

i=1

= 2 C,'N,‘(X) + gNn+1 (X)

i=1
n+1

W) = Y diNix)

i=1
= Z d;:Ni(x)
u~(x)=Y i=In+1ciNi(x)=Yi= 1n01N1(x)+gNn+l(x)w~(x) > i=1n+1diNi(x)=).i=1ndiNi(x)
where c;, d; are weighting coefficients.

With these definitions, we are equipped to rewrite the Galerkin form in an equivalent matrix form. Substitute for
itu~ and ww~ in G:

[ f(£) () [ (L) Lo

J01dx[(Ti=1ndidNidx)(Yj= lnqudeJrngnHdx)]=IOIdx[(2i=1ndiNi(x))f]JrZi:lndiNi(O)

Rewrite this equation as Y., d;G;(x) = 0Yi=1ndiGi(x)=0, where

[/ dxcde dN] [ ] /de(x)f AN/ (0).

G1=z,=1n [J01dxcjdNidxdNjdx] +g[f01dde1dden+ldx —[01dxNi(x)f~hNi(0).

dN d]\In+ 1

1
dn; dN;
Kijz/ dr ——1L ije{l,...,n)
0

1
F,s/ Qe N, + hNKO) - [/ ax dN"“] i€l .n}.
0

Kij=J01dxdNidxdNjdxi,jE€ {1,...,n}Fl—IOlde1(x)f+hN1(0)—g[f01ddeidden+1dx]i€{1,...,n}.



We can now write the matrix form of the problem, which will be solved using conventional linear-algebraic
methods.

Given the coefficient matrix KK and vector F'F_, find cc_ such that
Kc=F.

K__c_=F_.

Solution Properties

A solution to either the strong form S or the weak form W will satisfy the other; similarly, solutions to either of
the Galerkin form G or the matrix form M (defined over the same basis functions) will satisfy both. The primary
approximation is the transformation from the weak formulation W to the approximate Galerkin form G.
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The stiffness matrix KK__ is symmetric, banded, and positive-definite, making it attractive for conventional
matrix solution methods.

Example Solutions

Consider the foregoing system with three nodes and two elements. We wish to solve the system by hand for a few
values of f, g, h.

Grid and Shape Functions

The shape functions are a function of the nodes (here, located equidistant at N N, N,
X = {O, %, 1}x={0,12,1 }), and not of the equation.

=05 1 -2x 0<x< %
Ni(x)=q ?
0 ;3 <x<1
N1(x)={x-012—1-2x0<x<12012<x<1 ; 2 3
1 x
— > 0<x<i%
No(x) =4 2
% - 2-—-2 ;— <x<1

2
N2(x)={12—x12—2x0<x<121-x12—2-2x12<x<1

0 0<x<

x—1 1
T_) 2x—12 7
2

N3(x)={00<x<12x~112—2x-212<x<I.

1
N _ 2
3(x) = 1

<x
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Example1: f=0,g=0,h=1,n=2

The problem statement reduces to



Find u(x) such that

d2
u _ g 0<x<l
dx2
u(1) =0
d
duf _

dx x=0
d2u(x)dx2=00<x<1u(1)=0dudx|x=0=—1

To find the resulting matrix formulation M:

The matrix elements of K K are

dN dN
K“—/dx L= /(2)(2) 4x =2
=0
1
dN1 dN2 /2 2
Ky = Ky = dx—— 2)(=2) = —4 =2
12 21 ; o ; 2)(=2) szo
dN, dN T ! T !
Ky = / de = 2 2: 2(2)(2)+ / (=2)(=2) = —4x|  +4x —4
0 % x=0 x=%

K11=J01dxdN1dxdN1 dx=f 012(~2)(~2)=4x|x=012=2K 12=K21=[01dxdN1dxdN2dx=]012(2)(~2)=—4x|x=012=—2K2
p )
thus K = [ ]KA=[2—2—24].
=" |2 4

The solution vector FF_ is

1 1
Fi==N(0) =~
1 21() 2

1
F, = ENZ(O) =0
F1=12N1(0)=12F2=12N2(0)=0

1
and ' = [O]F_—[IO].

The unknown vector cc_ is now found as

Ke=r=

[—22 _42]_ - (1)] N

21]
)

K ¢ =F =[2-2-24]c =[10]=c_=[2—2-24]-1%[10]c_=[112].
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Substituting the coefficients back into the approximating solution itu~ now yields the FEM solution:



. 1-2¢x 1 2x 0<x<3 1—2x+x
u(x) = ZCiNi(x)+gNn+l(x) =1 { + = = =1-x
puy 0 2| 2-2x 1

u~(x)=Y i=1nciNi(x)+gNn+1(x)=1{1-2x0+12 {2x0<x<122-2x12<x<1={1-2x+x1—x=1—x

N =

The exact solution is # = 1 — x, in this case corresponding exactly to the FEM solution.
Example2: fER,g=0,h=1,n=2

For arbitrary real £, the problem statement becomes

Find u(x) such that

d?u(x)
o2 +f=0 0<x<1
u(l)=0
du
_— =—1
dx x=0

d2u(x)dx2+f=00<x<1u(1)=0dudx|x=0=—1
The nodes have not changed, so the shape functions remain the same. As before, we find the components of the

matrix solution.

The matrix elements of the stiffness matrix KK remain the same, as they are not a function of the source term f.

The solution vector FF_ becomes
1
Fi= [ @t +1m)
0
2 1
:/ dx(1-2)f+1=1+—f
0 4
1
F, =/ dx Na(x)f + 1 - N2(0)
0

3 1
= / dx(2x)f+/ dx (2 — 2x)f = %f
0 7
F1=J01dxN1(x)f+1-N1(0)=J012dx(1-2x)f+1=1+14fF2=[01dxN2(x)f+1-N2(0)=[012dx(2x)f+]12 1 dx(2—2x)f=12f

1+ 41
and F = [ 1 4f]F=[1+14f12f].

2

The unknown vector cc_ is now found as



Ke=F=

[2 —2]C__1+%f]

2 4] | 1
]2 —2]“ [H%]
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1
1+§]
c= :

K _ ¢ =F =[2-2-24]c_=[1+14f12f]=c_=[2-2-24]-1x[1+14f12f]=[1121212]x[1+14f12f]c_=[1+12f12+38f].

Substituting the coefficients back into the approximating solution iiu~ now yields the general FEM solution for
thecaseof fE R, g=0,h=1,n=2:

1—2x+<1 gf){ 2 _{(1+%f)+(—1—%)x (

0= 3 N, —(1+2 3
u(x)_;C,N,(X)'l‘gNnH(x)—<1+2f>{ 0 278 ) o-a T (1+3f) +(=1-3f)x

u~(x)=Yi=1nciNi(x)+gNn+1(x)=(1+121) { 1-2x0+(12+38f) {2x2—2x={(1+12£)+(—1—-14f)x0<x<12(1+34f)+(—1-34f):
The exact solution is quadratic:

2
u(x)=—2x2—x+(1+£2).

u(x)=—€x2—x+ <1+£).

The FEM solution approximates this solution along the element intervals and matches the exact solution at the
nodes. Some specific cases are plotted in the figure below. (The black grid represents the approximate solution
u(x)u~(x), and the smooth colored surface represents the real solutionu(x).)

Finite Element Sobatioes for the Example Problem




