ABAQUS · Elements & Meshing ME 498CM			M · Tools of Compu	tational Mechanics
ELEMENTS				
The following are a subset of available elements	available in Abaqus. Sections	refer to the Abaqus A	Analysis User's Manual.	
	600.1	SHELL) E LI	600 <i>(</i>
CINAX4 CINPS4 CINPS4 C/DC/DCC/AC	§22.1	S3 S4RSW STRI3 S/SC	warping 5/T/S educed integration mber of nodes /STRI/DS/SAX/SAXA	§23.6
BEAM RIGID/ANALYTICAL				
B310SH B310SH B310SH B/PIPE	define cross-sectional profile and relative beam orientation §23.3	R2D2 RB2D2 R3D4 RB2D2	am	§24.3
MEMBRANE/SURFACE		INFINITE/SEMI	-INFINITE	
M3D4R M3D4R MGAX2 M3D4R MGAX2 M3D4R M3D4R M3D4R M3D4R M3D4R M3D4R M3D4R M3D4R M3D4R M3D4R	§, §26.7		\ ìnite	§22.2
CONNECTOR		TRUSS		
CONN3D2 number of nodes 2D/3D CONN2D2 connector	§25	T2D2 T3D3H T2D2T T3D3T C/DC	hybrid number of nodes lisplacement nension, 2/3 C/DCC/AC	§23.2
POINT	ACOUSTIC/HYDRODYNAMIC			
MASS O HEATCAP ROTARY INERTIA	§24.1-2,4	ASI ASI1 AC1D3 F3D3 FLINK 2D	3D8 number of nodes 1/2D/3D/AX see also AC (continuum) 3 number of nodes /3D/AX	§26.14 §26.8
GAP/CONTACT		SPECIAL-PURP	POSE	
GAPUNI DGAP	§26.5, §31	SPRING DASHPOT JOINT		include springs, dashpots, joints, gaskets, drag chains, pipe-soil, coupling elements §26
	Topologically, CPE4=0	CAX4R=S4R=DC2	2D4, etc.; Abaqus/CAE o	loes not check DOFs.
DEGREES OF FREEDOM 1 <i>x</i> -displacement 2 <i>y</i> -displacement 3 <i>z</i> -displacement 4 rotation about <i>x</i> -axis, radians 5 rotation about <i>y</i> -axis, radians ME 498CA1	 6 rotation about a 7 warping amplity section beam ele 8 pore pressure, h pressure, or aco 	z-axis, radians ude (for open- ements) nydrostatic fluic oustic pressure	9 electric potent 10 connector mat 11 temperature (c in mass diffusi 12 second temp. (co16 [CC-BY-NC] Unive	ial erial flow, length or normalized conc. on analysis) shells or beams) ersity of Illinois
			L	,

ABAQUS · Elements & Meshing ME 498CM · Tools of Computational Mechanics MESHING METHOD 1. Mesh *independent* or *dependent* part instance Adapt predefined stencils to fill region. 2. Assign mesh controls · seeding, element type, meshing technique 3. Generate 4. Refine · with goal of fast accurate convergence 5. Verify · using verification tools 6. Optimize · based on analysis results Generate mesh on a face (edge) and then Do not use a preestablished mesh pattern; mesh is determined by region topology sweep along a sweep path through the and other elements. (Quad/Tri/Tet only) volume (area). ADVANCING-FRONT MEDIAL AXIS NMESHABLE Use partitions and/or the bottom-up Generate elements Use internal partitions to seed simpler technique to render an unmeshable part on boundary, proceed inwards on regions manageable. same basis **IMPORTING & CONVERTING SOLID MODELS** Build within region like building blocks Elysium translates most CAD formats to (not constrained to fill specific geometry). Abaqus-compatible formats; prefer CAE, IGS, SAT, ENF. **MESH QUALITY** SELECTION CRITERION **QUADRILATERAL** TRIANGLE HEXAHEDRON TETRAHEDRON WEDGE N/A 0.01 N/A 0.0001 N/A SHAPE FACTOR 10 5 10 5 10 SMALLER FACE CORNER ANGLE

170

10

cal stiffness; this creates shear strains

functions; avoid long thin bending

that make elements too stiff in

ISSUES

CAUSE

DIAGNOSIS

ASPECT RATIO

HOURGLASSING

LARGER FACE CORNER ANGLE

SHEAR LOCKING

160

10

CAUSE

bending.

DIAGNOSIS

CORRECTION

elements.

Reduced integration can lead to hour- Manifests in first-order fully-integra-

glassing, in which undersampling can ted elements as a nonphysical numeri-

This is most easily detectable visually, Excessive shear strain which mesh

VOLUMETRIC LOCKING

160

10

CAUSE

Occurs in fully-integrated elements with near-incompressible material behavior; spurious pressure stresses develop at integration points, leading to overstiffness. DIAGNOSIS Pressure stress at integration points shows checkerboard pattern. CORRECTION

170

10

160

10

Refine the mesh in regions of large plastic strain.

when elements alternate in structure. refinement does not remove. CORRECTION Use hourglass control or avoid the use Use enhanced strain or extra shape of reduced-integration elements. Refine the mesh in regions of large

lead to uncontrolled degrees of free-

dom which oscillate freely.

plastic strain. **ME 498CA1**