III ABAQUS ME 498CA1 Fall 2016

Loading & Analysis

Primary References

Abaqus/CAE User's Manual, §16

Getting Started with Abaqus: Keywords Edition, §11

Abaqus Theory Manual, §2, 6

Prescribed Loads

concentrated

degree of freedom

uniform field

analytical field

variable field

Computational Science and Engineering

Analysis steps (no BCs or predefined conditions)

Physical loads (point DOFs)

- Boundary conditions (*d*/v/T)
- Predefined fields (void ratio, temperature, exp'l data)

Load cases (sets of BCs + loads)

Rigid body motion error:

- static: "numerical singularity", "zero pivot"
- dynamic: "excessive plasticity"

Step Module

- Initial step
- Analysis steps (no BCs or predefined conditions)
 - General steps (nonlinear/linear, standard/explicit)
 - Linear perturbation steps (linear/standard)
 - Using the previous load/deformation state as a basis, simulate a linear perturbation.
- Loads are specified *absolutely*, not as additional accruals. *E.g.*, 1000 N→3000N should specify 1000, then 3000 (*not* 1000 then 2000)

Step Module—Load Manager

- Initial step
- Analysis steps (no BCs or predefined conditions)
 - General steps (nonlinear/linear, standard/explicit)
 - Linear perturbation steps (linear/standard)
 - Using the previous load/deformation state as a basis, simulate a linear perturbation.
- Nlgeom—persists across later steps
- Loads are specified absolutely, not as additional accruals.
- *E.g.*, 1000 N→3000N should specify 1000, then 3000 (*not* 1000 then 2000)

Step Module

Total time

increases throughout all general steps

- Step time
- begins at zero for each step

Output Requests

- Run complex simulations in stages
- Restart stores values in:
 - res (Abaqus/Standard)
 - adq (Abaqus/Explicit)

bdb of same name req.

- Frequency: every increment or interval by default
- The model used for a restart must be identical to the previous one in Geometry, Property, Mesh, prior Steps.

Restarts

Field HistoryHistory Output

variables of interest
region to output
rate of output

odb file—default output

rpt file—requested output (tabular)

Example: Modal Analysis

- 3D beam
- *L*=5m

D=0.18m

t=0.02m

- need load such that lowest vibrational mode > 50 Hz
- start with F=4 MN

Example: Modal Analysis

Geometry Features

- 3D/ 2D/ Axisymmetric
- Part Type:

Deformable/Discrete rigid/ Analytical rigid/Eulerian

Shape:

Solid/ Shell/ Wire (Beam)/ Point

Deformable/ Discrete Rigid

Analytical Rigid

Geometry Features

Wire (Beam)

one dimension sig. greater, stress most imp.

section point (orientation)

Geometry Features

Wire (Beam)

one dimension sig. greater, stress most imp.

section point (orientation)

Geometry Features

Shell

one dimension sig. smaller, stress insig.

section point (orientation)

RH rule for normal face SNEG 2 Three-dimensional shells 2 Axisymmetric shells

Computational Science and Engineering