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Finite Element Stress Analysis:
Theory; failure criteria; 
Example Application

ME498 ABAQUS: A short 
course for engineers

Professor Brian G. Thomas
Department of Mechanical and Industrial 
Engineering
University of Illinois at Urbana-Champaign

ME 471 – Lecture 29      ©  Brian G. Thomas, University of Illinois at Urbana-Champaign, All Rights Reserved.      2

What is a process model?

• Makes quantitative predictions about process

Equations and ConstantsInput
Data

Output
Data

See supplement: BG Thomas & JK Brimacombe, 
“Process Modeling”, 1997, 16 pages.  
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Example Model:
How long is a planet’s orbit (years) 

Kepler’s 3rd Law of Planetary Motion, 1619

P = R3/2

Pluto:

P = (39.44)3/2

= 248 years 
??

(discovered in 1930)

Mars:

P = (1.52)3/2

= 1.88 years

(matches observation)

Distance from Sun
(in Earth Orbital Radii)

Orbit Period
(in Earth years)
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Steps in Modeling - summary

1. Define the real-world problem and 
model (including constants)

2. Calibrate model to match known data 
(use dimensionless numbers) - Earth

3. Validate the model - Mars
– compare with known solution

4. Use the model 
• learn something new!  - Pluto

5. Extend the model further (needs to be 
more fundamental)  - other solar system
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What is model 
Implementation?

Process understanding

offline and  
literature  

models

computer software  
packages

property data

lab experiments 
physical models

numerical 
methods

experimental design

model validation  
and improvement

Process Product
PLANT

model  
calibration 

 

online 
models 

change operating 
practise / design

sensor 
measurementscontrol

Results from  
Plant Trials

process 
engineers

fundamental laws  
governing natural  

phenomena

?

Thomas, B. and J.K. Brimacombe, Process Modeling, Chap. 
8, in Advanced Physical Chemistry in Process Metallurgy, 
1997

inducing beneficial changes 
to process operation 
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Literature Models

Something you can do something about
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Graph containing results which can be implemented
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- increase fundamental understanding
- technology transfer
- design of experiments
- evaluation of alternative designs
- process optimization
- extension and evaluation of plant results
- extending lab measurements to quantify properties
- assist in scale-up
- online process control

If a clear reason to develop a model cannot be found, 
then it should not be developed!

Why Model?
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Find FEM Equations
1) Review Governing Eqns.-3D Elasticity

• Unknown field variables to solve for:
– 3 displacements:      u,v,w

– 6 strains:                  εx, εy, εz, γxy, γyz, γzx

– 6 stresses:               σx, σy, σz, τxy, τyz, τzx

• Equations to solve:

– 3 equilibrium equations:      [Λ]T {σ} ={F}

– 6 constitutive equations:      {σ} = [D] {ε}

– 6 strain-displacement eqs.:   {ε} = [Λ] {u}
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Find FEM Eqs.: Galerkin’s Method

• Substitute:
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boundary conditions

surface tractions
pressures
point loads
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body forces
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Global Equation System
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• Force Vectors

= “initial strain”: 
plastic, creep, thermal, etc.

{ }0ε

Initial strain
forces
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Stress Boundary Conditions
• Specify 1 of the following on each portion of the 

domain boundary for each DOF  (2 DOF for 2-D 
problems and 3 for 3-D):

N Nu u ( x, y,z )=

T
Shear traction

u
E

n

∂
∂

− = Φ

(Shear direction)
(Pressure direction)

Φ

chosen 
domain

boundary

On S1 Specify Displacement(s)

S1

T Tu u ( x,y,z )=

n̂

normal to
boundary

T̂
tangent to
boundary

On S2 Specify Surface Traction(s)
S2 N

Pressure traction

u
E

n

∂
∂

− = Φ

On chosen nodes: Point Load(s)

P
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{FΦ} Surface Traction 
Force Vector on Side of a CST

• Apply traction Φ (N/m2)
on side 1-2

OR: 

1

2

Pressure

Shear 

1

2

Φx

Φy

S2

Φ

example

1

2

3

Φ
v2

u2

v1

u1

1

2
Φ


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Stress Analysis Output

• 6 strain components (isotropic)
– εx, εy, εz, (normal) γxy, γyz, γzx (shear)

• 6 stress components (isotropic)
– σx, σy, σz, (normal) τxy, τyz, τzx (shear)

• Principle stresses, σ1, σ2, σ3

• Von Mises Effective stress, 

• Stress intensity, SI

From u,v,w:

{ } [ ]{ }Dσ ε=

{ } [ ]

u

B v

w

ε
 
 =  
  
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• Max principle tensile stress, 

• Max princ. compressive stress 

Principle Stresses, σ1, σ2, σ3
(S1,S2,S3 in ANSYS)

σ1= max(σ1, σ2, σ3)

σ3 = min

x xy zx

xy y yz

zx yz z

det 0

σ σ τ τ
τ σ σ τ
τ τ σ σ

−
− =

−

• Find (σ1, σ2, σ3) from 3 roots σ of:

• Coordinate transformation to eliminate shear

(σ1, σ2, σ3)



12/9/2015

8

ME 471 – Lecture 29      ©  Brian G. Thomas, University of Illinois at Urbana-Champaign, All Rights Reserved.      17

Principal Stress Meaning

2-D Mohr’s Circle

σ

τmax

σ1σ2

Shear
Stress

y

x

y

x

• Rotate coords

until shear = 0

σy

σx

τyx

τxy
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Stress Invariants, I1, I2, I3

( )
1 x y z

2 2 2 2 2 2 2
2 x y z xy yz zx 1

x xy zx

3 xy y yz

zx yz z

I

1
I 2 2 2 I

2

I det

= + +

= + + + + + −

=

σ σ σ

σ σ σ τ τ τ

σ τ τ
τ σ τ
τ τ σ

3 2
1 2 3I I I 0σ σ σ− − − =

• Use to find principal stresses from 3 roots of:
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Stress Intensity, SI
(SINT in ANSYS)

( )1 2 2 3 3 1max , ,σ σ σ σ σ σ= − − −SI
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Von Mises Effective Stress,
(SEQV in ANSYS)

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 22
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32

σ σ σ σ σ σ σ

σ σ σ σ σ σ τ τ τ

σ σ σ
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= − + − + − + + +

= + + = − −where  

σ

always > 0
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Ductile Failure

σ1

σ2

σyield

σ
UTS

ε

σ (yield surface -
ductile fracture)

Uniaxial loads

Bi-axial loads
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Von Mises Yield Criterion

Yield surface (2-D)

Also applies to polymers
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From, J. Chakrabarty, Applied Plasticity, Springer, 2000, pp.12-13.

Yield surface (3D)

For analylsis of complex, 3-D,
stress states
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Brittle Failure
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Results Analysis

• Brittle failure:

• Ductile failure:

a

1 max Bσ σ −>

max Dσ σ −>

Ic
max B

K

Y a
σ

π− >

max D Yieldσ σ− =

max principle tensile stress

fracture toughness

Von Mises

σyield  yielding
occurs

σUTS  ductile
fracture

geometry factor

flaw size
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Example:
Tri-axial Stress Condition

σ2= 60

σ1= 60 MPa

σ3= 60

σmax-D= 40 MPa

( ) ( ) ( )2 2 21
60 60 60 60 60 60

2
0

σ = − + − + −

=  Ductile Failure Impossible

But BRITTLE failure is likely

σmax-B= 55 MPa
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Combined Failure Criteria:
Yielding and Cracking

Ductile Failure

Yieldσ >σ

Ic
1

K

Y a
σ >

π

Brittle 
Failure

Failure controlled 
by large flaws

Lo
ad

1/Flaw Size  = 1/a

Intro Fracture Mechanics p. 190

Failure controlled by yield strength

max D−σ >σ
1 max B−σ > σ

No Failure
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Steps in Finite Element Analysis

1. Define the real-world problem

2. Transform to a mathematical problem
– governing PDE(s), BCs, and domain

3. Solve using FEM

4. Check
– analytical solutions and hand calculations

– experiments

5. Parametric studies

6. Evaluation - recommendations


