ME498 ABAQUS: A short
course for engineers

Finite Element Stress Analysis:
Theory; failure criteria;
Example Application

Professor Brian G. Thomas
Department of Mechanical and Industrial
Engineering

University of Illinois at Urbana-Champaign
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What is a process model?

Input - Output
Equations and Constants
paa | Ed = Data

* Makes quantitative predictions about process

See supplement: BG Thomas & JK Brimacombe,
“Process Modeling”, 1997, 16 pages.
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Example Model:

\W,How long is a planet’s orbit (years)
Kepler's 3 Law of Planetary Motion, 1619

Distance from Sun —_ 3/2 Orbit Period
(in Earth Orbital Radii) P=R - (in Earth years)

Mars: Pluto:

P =(1.52)3%2 P=(39.44)%2
=1.88 years o’ - 248gyears’

o 8 @ b

(matches observation) (discovered in 1930) -

Imace Copryriaht JPL -

‘Mm

—> 1. Define the real-world problem and
model (including constants)

2. Calibrate model to match known data
(use dimensionless numbers) - Earth
3. Validate the model - Mars
— compare with known solution
4. Use the model
—— ¢ |earn something new! - Pluto

5. Extend the model further (needs to be
more fundamental) - other solar system

Steps in Modeling - summary
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PLANT

Process —— Product
conlru\“ rsneen::L:remems ‘ change operating
v practise / design

| Online [T Results from | —gm.| process
. models Plant Trials ’) engineers
What is model i ?
Implementation? v

inducing beneficial changes [

Process understanding

to process operation A i
numerical
methods
Y
offline and desiin g lab experiments
Rt literature @ nodel validation physical models
models and

property data

fundamental laws
governing natural
phenomena

Thomas, B. and J.K. Brimacombe, Process Modeling, Chap.
8, in Advanced Physical Chemistry in Process Metallurgy,
1997
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Graph containing results which can be implemented

Literature Models

Something you care about

Something you can do something about
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Why Model?

- increase fundamental understanding

- technology transfer

- design of experiments

- evaluation of alternative designs

- process optimization

- extension and evaluation of plant results

- extending lab measurements to quantify properties
- assist in scale-up

- online process control

If a clear reason to develop a model cannot be found,
then it should not be developed!
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) Find FEM Equations
ﬁ.) Review Governing Eqns.-3D Elasticity

* Unknown field variables to solve for:
— 3 displacements:  u,v,w

— 6 strains: & Ep En Yo K Vi
— 6 stresses: O Oy Oy Ty Ty Ty

e Equations to solve:
— 3 equilibrium equations: [A]"{ o} ={F}
— 6 constitutive equations: {o} =[D] {&

— 6 strain-displacement eqs.: {& =[A4] {u}
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‘Find FEM Egs.: Galerkin’s Method

e Substitute: u u
{o}=[DJ{e}=[D][Al}v | and (v i=[N}{d}

shape functions

J([ANIND) [D([A][N]aV {d}= [(IN] {o})ds+[[N]{F}av
j{ ] [ an\]dv{d} JINT {F}dV+j( "{o})ds

3x3 /3D ~ — 4
“D body forces boundary conditions
K] surface tractions
nxn
m) () |m “m m point loads
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Global Equation System

[||<]{<|3|} ={F}y +{F}, +{F}, +{||°}

N m N
m

* Force Vectors
{F}bf =I[N]T{F}dV body forces [ﬁsj(m"):N
Vv

{F}d, = _“N]T {@}ds surface tractions (%}(mz)z N
I[B [Dl{&,}dV Initial strain 0 = [D]({S {60})

forces ——
{£e|a5t|c}

{80} = “initial strain”:
plastic, creep, thermal, etc.
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{P} = point loads (N)
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Stress Boundary Conditions

» Specify 1 of the following on each portion of the
domain boundary for each DOF (2 DOF for 2-D
problems and 3 for 3-D):

On S, Specify Displacement(s)
boundary, uN — UN( X’y’z)

P _
Pk Ur =0r (X,y,2)
On S, Specify Surface Traction(s)
S ©_du,
-E &n = (I)Prwsuretraction
I t
Eg[mjar(;/ _EO-)_UT = q)Shear traction

tangentto
boundary T

(Shear direction)

N (Pressure direction)

o On chosen nodes: Point Load(s)
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{Fe} Surface Traction
Force Vector on Side of a CST

2

v, o ° Apply traction @ (N/n?)
A on side 1-2

example

ul SZ_’”‘_

()]
2 % ) Shear 5 <I)y
\ OR: Pressure D,
V4
\\. 1 1 1
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i< Stress Analysis Output

i

6 strain components (isotropic) From u,v,w:

— &, § &, (normal) x., X, %x (Shear) u
{e} =[B] v
W

6 stress components (isotropic)
z,, (shear)
{o} =[DK{¢}

— O Oy, Gy, (normal) 7, 7,

Principle stresses, oy, 0,, 03
Von Mises Effective stress,
 Stress intensity, Sl
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Principle Stresses, o, 6,, 0;
(s1,s2,83in ANSYS)

« Max principle tensile stress, ;= max(. ¢, o)
e Max princ. compressive stress 03= min(s,. o, ;)
 Find (o3, 0,, 03) from 3 roots o of:

o,—O Ty 7,
det Ty o,—0 T, =0
- T, o,—0

e Coordinate transformation to eliminate shear
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Principal Stress Meaning

TYXTO'y <%

i& é.fi * Rotate coords
y Ty Y . until shear =0
| ;o

X X

Shear o
Stress 2D Mohr’s Circle

: g R\ T /"\

o, O

i s
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Stress Invariants, |, |,, |5

l,=0,+0,+0,

1 2 2 2 2 2 2 2
|z=§(0'x +o, +0, +2r, +21, +21, —Il)

O Ty Ty
|, =detiz,, o, 7,
sz Z-yz z

» Use to find principal stresses from 3 roots of:

3 2 .
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Stress Intensity, Si
(SINT in ANSYS)

Sl=max(|o, - o,

0, — 03| |0 _O'1|)
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Von Mises Effective Stress, 0
(SEQVin ANSYS)

always > 0

_ 1 2 2 2
G:ﬁ\/(al_O-Z) +(o,-0,) +(0;-0,)

\/(O'X —ay)2 +(o, —0'2)2 +(o,-0,) +6(Txy2 +7, +sz2)

1
J2

:% S°+S°+S° where Slzé(ZO'l—az—og)
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Ductile Failure

ﬂli. k Ductile materials 5 (y'eld Surface -
ductile fracture)

O Aluminum

& Copper
UTS = Mickel
Oyidd o Stee
e :_v:. A Mild steel

® Carburized steel

Bi-axial loads
(7}
2]

Distartion
energy theory

—— = —— Maximum shear
theory
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Von Mises Yield Criterion

T/%at

Yield surface (2-D)

|G /O] = 1.3 1.0

Also applies to polymers

5y Gy

PVC
PC

PS
PMMA

o > OO

-20T

Figure 7.12 Biaxial yield data for various polymers compared to a modified
octahedral shear stress theory. (After Raghava, Caddell, and Yeh [Raghava 73);
used with permission.)
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Yield surface (3D)

For analylsis of complex, 3-D,
stress states von Mises yield ¢,

locus

Deviatoric plane

FIGURE 1.5. Geometrical representation of yield criteria in the principal stress space.

From, J. Chakrabarty, Applied Plasticity, Springer, 2000, pp.12-13.
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Brittle Failure

oy Brittle materials
Pyn
1.0 e = e = _]
H0
Al
= a |
I
I 0 Brass
o o
- & | & Cast iron
| :
£ @ Cast iron
oy
o
| | 1 0=) al, 1 Lo
0 .o
|
2 —_— e = Maximum normal
stress theory
- 0:
S °l
oo
o
- |
]
Io
—-1.0 —= e
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Results Analysis

| max principle tensile stress

* Brittle failure: o, >0, &

fracture toughness
/ 9

l BTy ra— flawsize
“— geometry factor
Von Mises
....... — \
... Ductile failure: ¢>0,,,
C,iug = Vieldin
— O rax-p = OViad hed = oS,

oyrs= ductile
fracture
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Example:

Tri-axial Stress Condition
o,= 60

Ormaxn— 40 MPa

~+—— 0,= 60 MPa
/ .= 55 MPa
oy= 60

%\/(60—60)2 +(60-60)" +(60-60)°

(o)

=0 = Ductile Failure Impossible
But BRITTLE failure is likely
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Combined Failure Criteria
Yielding and Cracking
%\\\\\k;\ \\\\\\N
y o, > . .
Y\/Tc_a Ductile Failure :::
g NN G > 6 g
o
R Brittle, % og o, °
b Failure gg%
©
o No Failure
Intro Fracture Mechanics p. 190 |
1/Flaw Size =1/a
Failure controlled . .
by large flaws ¢m | = Failure cclntrolled by yield strength
G1>Gma><—B G>GmaX—D
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Steps in Finite Element Analysis

1. Define the real-world problem

—>2. Transform to a mathematical problem

— governing PDE(s), BCs, and domain
3. Solve using FEM

4. Check

analytical solutions and hand calculations
experiments

5. Parametric studies

6. Evaluation - recommendations
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