
Overview of Dynamic Analysis in Abaqus

1. Introduction
Despite static analysis, Abaqus also offers several methods to study dynamic problems. In essence, in a 
dynamic problem the effect of inertia should be considered in the analysis and the objective is to study 
the temporal response of the system under specific conditions (for example to simulate the deformation
of sheet metals in the metal punching process, to study dynamic loads transmitted to an electronic 
device when it is dropped on a hard surface, or to study the transient thermal problem). 

In dynamic (transient) problems, the solution step often involves direct integration of the system of 
equations that describe the motion (or other physics) of the system under consideration.  Both 
Abaqus/Standard and Abaqus/Explicit can be used to study these problem. The difference arises from 
the fact these products adopt different schemes to solve (evolve) the non-linear system of equations that
describe the problem. Abaqus/Standard utilizes implicit direct integration schemes for this purpose 
whereas Abaqus/Explicit employes explicit integration schemes. 

In general, explicit schemes are  more cost-effective in solving a large non-linear system of equation 
that describe a dynamic system. Major disadvantage for the explicit methods is the sensitivity of their 
stability with the choice of the time-step (jump in the time during each solution increment). In the other
hand, implicit schemes allow for the selection of larger time-steps, however they impose a larger 
computational cost for solving a non-linear system. The selection between Explicit and Implicit 
(Standard) product is sometime limitted by the type of analysis that is needed, and usually it very much
depends on the nature of PDE (partial differential equation) describing the physics of the problem 
(transient analysis is not only limited to the structural problem), type of the boundary conditions 
describing the system, total amount of analysis time and etc. In the remainder, we will compare these 
two solution schemes in more details.

Fig 1- Dynamic analysis of wave propagation in elastic media

2. Implicit versus Explicit Integration Scheme



2.1. Matrix Inversion
Abaqus/Standard provides a choice of implicit operators for the integration purpose, while 
Abaqus/Explicit uses the central-difference operator. In an implicit dynamic analysis the integration 
operator matrix must be inverted and a set of nonlinear equilibrium equations must be solved at each 
time increment. In an explicit dynamic analysis displacements and velocities (applicable to structural 
problems) are calculated in terms of quantities that are known at the beginning of an increment; 
therefore, the global mass and stiffness matrices need not be formed and inverted, which means that 
each increment is relatively inexpensive compared to the increments in an implicit integration scheme.

2.2. Stability
The size of the time increment in an explicit dynamic analysis is limited, because the central-difference 
operator is only conditionally stable; whereas the implicit operator options available in 
Abaqus/Standard are unconditionally stable and, thus, there is no such limit on the size of the time 
increment that can be used for most analyses in Abaqus/Standard (accuracy governs the time increment
in Abaqus/Standard).
In Abaqus Explicit, the stability limit for the central-difference method (the largest stable time 
increment) is closely related to the time required for a stress wave to cross the smallest element 
dimension in the model; thus, the time increment in an explicit dynamic analysis can be very short if 
the mesh contains small elements or if the stress wave speed in the material is very high. The method 
is, therefore, computationally attractive for problems in which the total dynamic response time that 
must be modeled is only a few orders of magnitude longer than this stability limit; for example, wave 
propagation studies or some “event and response” applications. 

2.3. Element Types
Abaqus/Explicit offers fewer element types than Abaqus/Standard. For example, only first-order, 
displacement method elements (4-node quadrilaterals, 8-node bricks, etc.) and modified second-order 
elements are used, and each degree of freedom in the model must have mass or rotary inertia associated
with it.

2.4. Advantages of Explicit Method
Main advantages of Abaqus/Explicit are following:

 The analysis cost rises only linearly with problem size, whereas the cost of solving the 
nonlinear equations associated with implicit integration rises more rapidly than linearly with 
problem size. Therefore, Abaqus/Explicit is attractive for very large problems (like modeling of 
vehicle crash)

 The explicit integration method is often more efficient than the implicit integration method for 
solving extremely discontinuous short-term events or processes (like electronics drop test)

 Problems involving stress wave propagation can be far more efficient computationally in 
Abaqus/Explicit than in Abaqus/Standard (like modeling of blast waves)

In choosing an approach to a nonlinear dynamic problem you must consider the length of time for 
which the response is sought compared to the stability limit of the explicit method; the size of the 
problem; and the restriction of the explicit method to first-order, pure displacement method or modified
second-order elements. In some cases the choice is obvious, but in many problems of practical interest 
the choice depends on details of the specific case. Experience is then the only useful guide.

3. Dynamic Solution Procedures in Abaqus
Generally, dynamic solution techniques in Abaqus can be divided in two types:



 Direct solution: must be used for non-linear problems
 Modal superposition: can be used for linear and mildt non-linear problems

Abaqus provides following direct solution procedures for dynamic analysis:
 Implicit dynamic analysis: can be used problems that involve strongly non-linear transinet 

dynamic response (this is used in Abaqus/Standard General Step)
 Subspace-based explicit dynamic analysis: the mode shapes (eigen modes) of the system are 

first extracted using frequency extraction step and then uses as a global basis vector to solve the
system using an explicit scheme. This method can be used for mild nonlinear systems that mode
shapes are not changed significantly during analysis (therefore can not be used for contact 
problems)

 Explicit dynamics analysis: this is the method used by Abaqus/Explicit
 Direct-solution steady-state harmonic response analysis: As name implies, it can be used to find

steady-state harmonic response of a system. The method of choice when frequency-dependent 
effects (such as damping, or other model parameters) should be captured

The following modal superposition procedures are provided in Abaqus:
 Mode-based state-state response: can be used to find linearzied system response to harmonic 

excitations
 Subspace-based steady-state harmonic response analysis: Much cheaper way than direct 

analysis method to capture frequency-dependent effects
 Mode-based transient response analysis: the modal dynamics analysis procedure that can be 

used to capture transient response for linear problems using modal superposition
 Response spectrum analysis: can be used to obtain approximate upper bound of the peak 

significant response of a system to an input spectrum provided by user
 Random response analysis: to capture the linearized response of a system to random excitations
 Complex eigen value extraction: to calculate the complex eigenvalues and the corresponding 

complex mode shapes of a system 
In the sequel more details on some of these solution methods are provides. More detail discussion can 
be found in the Abaqus Analysis User's Guide Section 6.3.

3.1. Implicit Dynamics Analysis
As mentioned earlier this solution procedure is the most general (and also most expensive) technique 
available in Abaqus for solving nonlinear problems. This is the method can be used for problems 
involving nonlinearity (material or geometric), contact and moderate energy dissipation. The procedure
can be applied to a broad range of applications that require more sophisticated numerical solution 
strategies, such as the amount of numerical damping required to obtain convergence and the way in 
which the automatic time increment algorithm proceeds through the solution. Typical dynamic 
applications fall into three categories:

 Transient fidelity applications: small time increments are taken to accurately resolve the 
vibrational response of the structure, and numerical energy dissipation is kept at a minimum for 
example in the analysis of satellite systems, require minimal energy dissipation. These stringent 
requirements tend to degrade convergence behavior for simulations involving contact or 
nonlinearities.

 Moderate dissipation applications: for problem in which moderate amount of energy is 
dissipated by plasticity, viscous damping, or other effects. Applications include various 
insertion, impact, and forming analyses. Usually numerical energy dissipation is used in these 
analyses to reduce solution noise and improve convergence behavior.

 Quasi-static applications: when final static response is only needed and inertia effects are 



introduced primarily to regularize unstable behavior. Example of statically unstable behavior 
include (temporally) unconstrained rigid body modes or “snap-through” phenomena. With 
adaptive time-stepping strategy, large time increments are taken when possible to obtain the 
final solution at minimal computational cost. For these problem, considerable numerical 
dissipation may be required to obtain convergence during certain stages of the loading history.

The classification of the application is determined by the user and Abaqus assigins numerical settings 
based on this selection. Sometimes accurate results can be obtained with more than one method, 
therefore the most efficient approach should be used. As a rule of thumb, among these tree 
classification, high-dissipation quasi-static method results in best convergence behavior.

3.1.1 Time-Integration Method
Abaqus/Standard uses the Hilber-Hughes-Taylor (an extension of Newmark β-method) time integration
by default and backward Euler method is used for quasi-static classification. As mentioned earlier for 
these implicit methods, the tangent matrix should be evaluated and inverted and the non-linear system 
of equations is solved in each time increment iteratively using Newton's method. The method is 
unconditionally stable and this is its great advantage compared to conditionally stable explicit methods.
Application of a finite time-step may result in numerical damping (energy dissipation, completely 
different from damping as a material property but same effect) from the system. The amount of energy 
dissipation can vary among different operator types (for example backward Euler is more dissipative 
than Hilber-Hughes-Taylor) and can be controlled by tweaking the numerical settings of the method. 
Table 1 summarizes default numerical values for the parameters used in Abaqus for different 
applications. User can specify the value for α (-0.5 <=  α < 0) and the other two parameters are 
calculated according to this value based on the following relations:

β = 0.25(1 – α)2

γ = 0.5 -  α

Table 1- Defaule parameters for Hilber-Hughes-Taylore time integration scheme

Parameter

Application

Transient Fidelity Moderate Dissipation

α –0.05 –0.41421

β 0.275625 0.5

γ 0.55 0.91421

The ability of the operator to effectively treat contact conditions is often of considerable importance 
with respect to their usefulness. For example, some changes in contact conditions can result in 
“negative damping” (nonphysical energy source) for many time integrators, which can be very 
undesirable.

3.1.2. Incrementation Scheme
In this analysis, Abaqus uses automatic time incrementation method. The time-step is adjusted 
depending on the behavior of the Newton iteration and the accuracy of the time integration. For quasi-
static analysis, the value of time increment is adjusted based on these criteria:

 The time increment size is reduced if an increment appears to be diverging or if the 



convergence rate is slow
 The time increment size is reduced if an increment appears to be diverging or if the 

convergence rate is slow
For moderate dissipation problems same criteria is used plus the maximum allowable time step is set to
one-tenth of the step duration. For the transient fidelity analysis the following criteria used to decide 
about the time step:

 The time increment size is reduced if an increment appears to be diverging or if the 
convergence rate is slow.

 The time increment size is reduced if changes in contact status are detected during the first 
attempt of processing an increment. The new increment size is set such that the end of the 
increment corresponds to the average time of the contact status changes that were detected with 
the previous increment size. (In such cases an additional very small time increment is used to 
enforce compatibility of velocities and accelerations across active contact interfaces.)

 The time increment size is reduced if the half-increment residual (out-of-balance force) halfway
through a time increment exceeds the half-increment residual tolerance, which is 10,000 times 
the time average force for a contact analysis or 1000 times the time average force for an 
analysis without contact.

 The time increment is gradually increased if rapid convergence occurs in previous increments.
 The upper bound for the time increment size is equal to 1/100 of the step duration.

Direct time incrementation can also specified by the user and set to a constant value (generally not 
recommended). In this case, analysis terminates if convergence tolerances are not satisfied with the 
maximum number of iterations specified by the user.

3.2. Explicit Dynamic Analysis
As mentioned earlier, explicit analysis is recommended under the following conditions:

 large dynamics problems
 when general/complicated contact conditions are needed (like crash worthiness simulations)
 when large deformations and rotations are happening
 can be used to perform an adiabatic stress analysis if inelastic dissipation generate heat in 

materials (for example in large strain-rate deformation)
 allows for both automatic and fixed time incrementation

3.2.1. Time-Integration Method
The equation of the motion for the body is integrated using a central-difference integration rule:

where uN refers to the degree of freedom (Displacement/Rotation) numerb N , subscript i refers to the 
increment number, Δt is the time-step. u. and u.. are velocity and accelerations of the previous time 
step. The efficiency of the explicit time-step originates from the use of diagonal (lumped) element mass
matrices since the accelerations at the beginning of the increment are calculated by



where MNJ is the lumped mass matrix. PJ is the applied load vector, and IJ is the internal force vector. 
The diagonal mass matrix can be simply inverted. Other reason for added computational efficiency of 
the method is the fact that the tangent stiffness matrix is not needed and no iteration need to be 
performed during analysis. The internal force vector is assembled by element contributions. 

3.2.2 Stability
When no damping exist, the central difference time integration scheme is stable when

where ωmax is the highest frequency of the system. With damping when the stability condition is

where ξmax is the fraction of critical damping in the mode with highest frequency. As can be noted, 
introduction of damping reduces the stable time-step size.

3.2.3 Stable Time Increment
Since highest frequency of the system is not known a-priori (or expensive to calculate) an 
approximation to the stable time increment is often using smallest transit time of a dilatational wave 
across every element in the mesh

where Lmin is the smallest element dimension in the mesh and cd is the dilatation wave speed. Since this 
is not a conservative approximate value for the time-step, Abaqus/Explicit uses a smaller factor of this 
value (between 1 and 1/√2). 

3.2.4 Time Incrementation and Scaling
As mentioned, the time-step used in explicit schemes is limited to the stability bound. A larger values 
for time-step cause unbounded oscillation in the solution field (and energy) and finally cause 
divergence. User can scale the stable time-step estimate to reduce the chance of divergence.

3.2.5 Automatic Time Incrementation
Abaqus by default uses and automatic time incrementation scheme. Two types of stable time-step 
estimation is used for this purpose:

 Element by element estimate : more conservative criteria which uses dillatational wave speed 
for all elements in the system (compared to a global value for the whole model) to estimate the 
stable time-step

 Global estimate : less conservative, will be switched to this once algorithm determines it has a 
reasonable accuracy

3.2.6 Applications
The explicit dynamics procedure is ideally suited for analyzing high-speed dynamic events, but many 



of the advantages of the explicit procedure also apply to the analysis of slower (quasi-static) processes. 
A good example is sheet metal forming, where contact dominates the solution and local instabilities 
may form due to wrinkling of the sheet.
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