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Introduction 

Recirculating flows are commonly observed in several engineering applications, ranging from industrial 

processes to irrigation canals. They are often a result of a sudden change in the geometry of channels or 

pipes through which the fluid flows, such as orifices, baffles, sloping walls, etc. While also possible in 

compressible flows, recirculating flows are often observed in incompressible flows. Such flows have two 

key features: an upstream response to the change in geometry in the flow, and the development of negative 

gauge pressures and resultant recirculating flows.  

In classical fluid mechanics, recirculating flows are often modeled through empirical coefficients that take 

into account the loss in energy or head. For example, the Bernoulli Equation for a sudden expansion along 

a streamline in a pipe flow is often written as (1): 
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Where the first three terms on either side of equation (1) represent pressure, kinetic and potential energy 

heads, and the last term follows from the Borda-Carnot Equation with k being an empirical loss coefficient. 

Equations of a similar form have been derived for many other flow geometries as well. However, all of 

these are for regular geometries that cannot readily be extrapolated to more complex geometries or cases 

with different boundary conditions. In that case, when regular laboratory testing is difficult to perform, 

Computational Fluid Dynamics (CFD) may be employed for rapid solutions, such as in references (2,3,4).  

However, CFD solutions should be used carefully so as to weed out grossly incorrect solutions and avoid 

the ‘garbage-in-garbage-out’ phenomenon that is all too often seen in the area. A common approach for this 

is to apply CFD to simple geometries for which experimental or even analytical solutions have been derived, 

and to compare the solutions. A CFD program thus validated, can be used with some degree of confidence 

for more complicated problems whose solutions are not readily available. Therefore, in this report for the 

ME 498 Tools of Computational Mechanics (CF1) class, two commonly-observed and well-researched 

geometries are modeled using a CFD solver, ANSYS FLUENT. Both the behavior of the numerical solution 

as well as results of the primitive variables are discussed. While the results are not validated, the solution 

if verified through a grid convergence test. 

Problem Description 

In this study, two flow geometries from a list of six possible ones were chosen for simulation. These are: 
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(a) Planar sudden expansion in a pipe without taper 

(b) Flow over a baffle placed in a pipe 

A schematic diagram of the flow geometries is shown in Figure 1. It was assumed that H = 1 m. 

Figure 1: Flow geometries under consideration: (a) Planar sudden expansion and (b) flow over a baffle. Diagrams taken from 

the problem statement for ME 498 provided by Dr. Neil Davis. 

For this study, flow physics were held constant (as discussed in a later section) while the grid was refined 

to ensure mesh convergence. The element size was subsequently set at 0.1H, 0.05H, and 0.025H in three 

stages. To obtain this, two mesh controls were added in the pre-processor: 

(a) Edge sizing corresponding to the desired element size was applied to all the edges 

(b) Face meshing was applied to the 2D flow domain 

A diagram showing the final mesh is shown in Figure 2 for the planar expansion case and in Figure 3 for 

the baffle case. Important mesh statistics for each case are shown in Table 1, from which it can be concluded 

that the mesh is of very high quality. 

SCHEMATICS of ALL CASES
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Figure 2: Final meshes for the planar expansion case for elements of size 0.1H, 0.05H, and 0.025H 

Figure 3: Final meshes for the baffle case for elements of size 0.1H, 0.05H, and 0.025H 
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Table 1: Mesh statistics for each element size in the Planar Expansion and Baffle cases 

Planar Expansion Flow over a Baffle 

0.1H 0.05H 0.025H 0.1H 0.05H 0.025H 

Number of 

Elements 

1100 4400 17600 1195 4780 19120 

Element 

Quality 

0.99947 for 

100% of 

elements 

0.99947 for 

100% of 

elements 

0.99947 for 

100% of 

elements 

0.99947 for 

100% of 

elements 

0.99947 for 

100% of 

elements 

0.99947 for 

100% of 

elements 

Aspect 

Ratio 

1.00000 for 

100% of 

elements 

1.00000 for 

100% of 

elements 

1.00000 for 

100% of 

elements 

1.00000 for 

100% of 

elements 

1.00000 for 

100% of 

elements 

1.00000 for 

100% of 

elements 

Skewness Of the order 

of 10-10 for 

100% of 

elements 

Of the order 

of 10-10 for 

100% of 

elements 

Of the order 

of 10-10 for 

100% of 

elements 

Of the order 

of 10-10 for 

100% of 

elements 

Of the order 

of 10-10 for 

100% of 

elements 

Of the order 

of 10-10 for 

100% of 

elements 

Orthogonal 

Quality 

1.00000 for 

100% of 

elements 

1.00000 for 

100% of 

elements 

1.00000 for 

100% of 

elements 

1.00000 for 

100% of 

elements 

1.00000 for 

100% of 

elements 

1.00000 for 

100% of 

elements 

Details of the Simulation 

Once the pre-processing was completed and the final mesh obtained, it was read into the solver ANSYS 

FLUENT for each case. Double precision was used on a single-core processor with a pressure-based solver, 

as is common for incompressible flow. The same settings were used in each case for the grid convergence 

study. The fluid material was defined as a fictitious ‘case fluid’ as described in the next section in order to 

fix the Reynold’s Number at 100. For this flow, laminar flow physics was suitable and the Viscous – 

Laminar model was activated, with all other models turned off. The SIMPLE algorithm (5) for pressure-

velocity coupling was used together with the following discretization schemes: 

(a) Gradient terms were discretized with a Least Squares Cell Based approach 

(b) Pressure was discretized with a second order scheme 

(c) Momentum was discretized with a second order upwind scheme 

Three solution monitors in the form of scaled residuals were set: continuity, x-velocity, and y-velocity. The 

tolerance for each of these was set at 10-6 or 1000 maximum iterations, whichever is reached first. FLUENT 

allows for a Hybrid Initialization for faster convergence, which was applied before iterations were initiated. 

Numerical Parameters 

As outlined previously, a fictitious ‘case fluid’ was created to achieve Re = 100. This fluid has a density of 

1 kg/m3 and viscosity of 0.01 Pa-s. From the problem geometry, a hydraulic diameter was defined as: 

IMAGE OF MESHED BODY WITH 
CORRESPONDING SETUP EXPLANATION
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𝐷𝐻 =
4𝐴

𝑃

(2) 

Where A is the area of the cross-section and P the wetted perimeter. For this simulation, the cross section 

of both the geometries (planar expansion and baffle) was assumed to be a unit square of side H = 1 m and 

hence, A = 1 m2 and P = 4 m. Thus, 𝐷𝐻 = 4 ∗
1

4
= 1 𝑚.

Finally, the inlet velocity (as shown in Figure 1) was assumed to be 𝑢𝑖𝑛 = 1 𝑚/𝑠, so that 𝑅𝑒 =
𝜌𝑢𝑖𝑛𝐷𝐻

𝜇
=

1∗1∗1

0.01
= 100. Thus, laminar flow physics was used for the solution. The grid sizes based on the value of H 

were 0.1 m, 0.05 m, and 0.025 m for each geometry. 

The outlet was set to pressure-outlet with a gauge pressure of 0 at an operating pressure of 101325 Pa. The 

other boundaries were set as walls. A hybrid initialization was used to speech up convergence.  

Solution 

This section describes the numerical solutions obtained for each case. 

Computational Times and Numerical Behavior 

The number of iterations to convergence and CPU time are shown in Table 2 (obtained in FLUENT from 

Reports > System > Time Usage). As stated previously, the residuals were set to a tolerance of 10-6 for each 

variable, or a maximum of 1000 iterations, whichever is achieved first. The residuals for the planar 

expansion case are plotted against the number of iterations in Figure 4 and for the baffle case in Figure 5.  

Table 2: Iterations to convergence and CPU user time for each case 

Planar Expansion Flow over a Baffle 

0.1H 0.05H 0.025H 0.1H 0.05H 0.025H 

Iterations to 

convergence 

138 334 890 296 606 1000 (max) 

CPU User 

Time 

(seconds) 

4.71875 13.4844 92.9531 8.48438 23.375 114.156 

SHOW CALCULATIONS 
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Figure 4: Residuals for the planar expansion case for grid size of (a) 0.1H (b) 0.05H and (c) 0.025H 

Figure 5: Residuals for the baffle case for grid size of (a) 0.1H (b) 0.05H and (c) 0.025H 

For the planar expansion case shown in Figure 4, the convergence rate is more or less constant for all three 

grids. Convergence was reached before the maximum number of iterations (1000), with x- and y-velocities 
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converging to tolerance well before the continuity condition, as is typically observed. Overall, good 

convergence was obtained for this case. 

For the case of flow over a baffle, convergence was more difficult as compared to the planar expansion 

case with corresponding element size. Initially (about the first 100 iterations), there is some oscillatory 

behavior observed particularly for continuity, and after that there is more rapid convergence, although 

slower than the planar expansion case. In particular, the finest mesh for the baffle case does not fully 

converge at 1000 iterations, with the velocities reaching a residual of below 10-6 but continuity remaining 

on the order of 10-5. This indicates that there is some complicated physics that is difficult to resolve for the 

flow over a baffle, as discussed in the next section.  

Flow Physics 

With the numerical solution at hand, the flow physics can be analyzed in a post-processor, CFD-Post in this 

case. First, a quick look at the pressure contours serves as a useful guide of where there is some significant 

physics underway for further analysis. The pressure contours for planar expansion and baffle cases are 

shown in Figure 6 and Figure 7 respectively.  

Figure 6: Pressure contours for the planar expansion case for grid size of (a) 0.1H (b) 0.05H and (c) 0.025H 

DISCUSS CONVERGENCE FOR VARYING 
CRITERIA : MESH, etc

EXPLANATION OF FLOW PHYSICS 
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Figure 7: Pressure contours for the baffle case for grid size of (a) 0.1H (b) 0.05H and (c) 0.025H 

For the planar expansion case, it can be seen that while all three meshes give similar results, the finer mesh 

appears to capture some localized areas of higher pressure. However, of primary interest is the pressure 

field near the expansion, and all three meshes indicate the development of localized low pressure areas 

around the expansion, indicating possible flow separation. This will be further examined through 

streamlines later.  

For the baffle case, a sudden change in pressure is observed just before and after the baffle, and it is clear 

that using a finer mesh leads to somewhat different solutions with decreasing size of elements. In particular, 

the finest mesh of element size 0.025 m leads to some large and small values of pressure being observed, 

which makes a localized, rapidly-changing solution difficult to capture. After the baffle, a zone of negative 

pressure is developed, as expected from the flow physics, leading to recirculating flow and flow separation 

as observed by the streamlines in the next paragraph.  

The streamlines can be observed by seeding the post-processor at a particular location. In this case, two 

locations are possible: 

(a) At the inlet: While this is the most obvious, it fails to capture the recirculating flow. However, it 

does show the upstream effect of a change in geometry on the flow. 

OBSERVATION OF RESULTS
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(b) Just after the expansion or baffle: This approach is useful to observe the recirculating flow, but 

not the rest of the flow.  

Streamlines are plotted for both locations (a) and (b) in order to obtain a complete picture of the flow. 

Figure 8 shows the streamlines for the planar expansion case while Figure 9 shows them for the baffle case. 

 

Figure 8: Streamlines for the planar expansion case for grid size of (a) 0.1H (b) 0.05H and (c) 0.025H. Diagrams on the left 

show streamlines from the inlet, while those on the right show them just after the expansion. 
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Figure 9: Streamlines for the baffle case for grid size of (a) 0.1H (b) 0.05H and (c) 0.025H. Diagrams on the left show 

streamlines from the inlet, while those on the right show them just after the expansion. 

For both cases, the streamlines clearly capture the recirculation predicted from the pressure contours. 

Moreover, upstream changes to the flow can also be seen clearly in the streamlines from the inlet. Thus, 

the numerical CFD analysis on ANSYS FLUENT is able to resolve the flow, and the mesh refinement study 

appears to lead to a converging flow field.  

As a final check on mesh convergence, the pressure along the wall can be plotted and compared, as shown 

in Figure 10 for the planar expansion case and Figure 11 for the baffle case.  
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Figure 10: Pressure along the bottom wall for the planar expansion case for grid size of (a) 0.1H (b) 0.05H and (c) 0.025H. 

Figure 11: Pressure along the bottom wall for the baffle case for grid size of (a) 0.1H (b) 0.05H and (c) 0.025H. 

In this case, mesh convergence can be clearly quantified. For the planar expansion case, the changes in inlet 

pressure as a result of the upstream propagation of the disturbance (i.e., the expansion) can be observed as 

an increasing pressure with mesh refinement. Next, the effect of the recirculating flow on the downstream 

pressure can also be observed. There is a sudden decrease in pressure after the expansion, which then rises 

again to a maximum before falling to the boundary value of zero-gauge pressure. While all the three meshes 

more or less agree on the position of the local maximum after the expansion, the value steadily converges 

to about 0.5 Pa with refinement. The sharp discontinuity or ‘kink’ observed at x = 2 m is because of the 

sudden change in geometry and is non-physical in nature. Further refinement would be necessary to obtain 

a smooth curve there. 

For the baffle case too, the upstream propagation of the disturbance (the baffle) is observed through 

increasing pressure at the inlet with refinement of the mesh. Downstream though, the coarse mesh (element 

size 0.1H) does not agree with the finer meshes in terms of the location of the downstream pressure maxima, 

although it does agree on the corresponding value to a large extent. However, the pressure minimum does 

not seem to converge with these three meshes. Thus, mesh refinement is important in this case due to the 
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more complex physics involved. Finally, in this case as well, a non-physical discontinuity is observed at x 

= 3 m because of the baffle, which can only be resolved by further refinement. 

Conclusion 

In this study, two types of geometries, both for sudden changes, were examined for laminar flow behavior 

at Re = 100, with a mesh convergence study being conducted to verify the results. The results indicated that 

the CFD solver, ANSYS FLUENT, was able to capture expected flow physics well, although further 

refinement is necessary for convergence of results. In particular, the solver was able to resolve two 

important flow characteristics: the upstream propagation of the disturbance, and recirculation and flow 

separation as a result of development of low or negative gauge pressure.  

In future studies, further mesh refinement, particular around the change in geometry, is recommended for 

better resolution of the flow. 
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