Mesh Quality Metrics

Access the metrics at $Mesh \rightarrow Statistics \rightarrow Mesh$ Metrics.

Element Quality: area or volume over sum of square of edge lengths. EQ measures how far elements are from being perfect—*e.g.*, one indicates a perfect tetrahedron or cube, whereas near zero signifies a terrible element.

Aspect ratio: essentially ratio of longest edge to shortest edge; should not exceed 100. Skewness: closeness to ideality of face or cell (*i.e.*, equilaterality or equiangularity) Orthogonal quality: similar to skewness, but on reverse scale.

	Unacceptable	Bad	Acceptable	Good	Very good	Excellent
Skewness	0.98 - 1.00	0.95-0.97	0.80-0.94	0.50 - 0.80	0.25 - 0.50	0-0.25
Orthogonal quality	0-0.001	0.001-0.10	0.10-0.20	0.20-0.69	0.70-0.95	0.95-1.00

Practical Meshing

Create a 2D rectangle of dimensions 20 cm \times 5 cm according to the procedure introduced in class. Apply a global sizing of 1 cm (*Mesh* \rightarrow *Insert* \rightarrow *Sizing*, *Face Meshing*) and mesh it.

Answer the following questions for the 2D rectangular geometry mesh.

- 1. What are the overall mesh metrics?
 - a. Number: elements b. Element quality: _____ (best) _____ (worst) c. Aspect ratio: _____(best) _____(worst) d. Skewness: _____(best) _____(worst)

 - e. Orthogonal quality: _____ (best) _____ (worst)

Find the "lowest-quality" mesh element (by your own judgment, visually or mathematically).

- 2. What are the element mesh metrics? (Use the *Mesh Metrics* plot to help with this task.)
 - a. Location
 - b. Element quality:
 - c. Aspect ratio:
 - d. Skewness:
 - e. Orthogonal quality:

Apply a local sizing of 0.25 cm on the edges to refine the boundary layer. (Select location; *Insert→Sizing*) Remesh.

- 3. How many mesh elements do you have now? elements
- 4. Did the lowest-quality mesh element improve (and how), and what is now the worst feature of that element? (The "same" element doesn't exist—select one in the same region.)

- 5. Where did the limiting case "worst" element move to, and what are its characteristics?
 - a. Location
 - b. Element quality:
 - c. Aspect ratio:
 - d. Skewness:
 - e. Orthogonal quality:

3D Cylinder

Create a 3D cylinder by extruding a $\emptyset 10$ cm circle along L = 20 cm. Generate a default mesh. Answer the following questions for the 3D cylindrical geometry mesh.

6. What are the overall mesh metrics?

a.	Number:	elements	
b.	Element quality:	(best)	_ (worst)
c.	Aspect ratio:	(best)	_ (worst)
d.	Skewness:	(best)	_ (worst)
e.	Orthogonal quality:	(best)	_ (worst)

Right click on either end (face) of the cylinder. *Insert* \rightarrow *Inflation*. Select the circumference of the face as *Boundary*. Generate the mesh again to see the effect of refinement along the boundary.

7. What are the new overall mesh metrics?

a.	Number:	elements	
b.	Element quality:	(best)	(worst)

- c. Aspect ratio: _____(best) _____(worst) d. Skewness: _____(best) _____(worst)
- e. Orthogonal quality: _____ (best) _____ (worst)

Find the "lowest-quality" mesh element (by your own judgment, visual or formal).

- 8. What are the mesh metrics?
 - a. Location
 - b. Element quality:
 - c. Aspect ratio:
 - d. Skewness:
 - e. Orthogonal quality:

Named Selections

Fluent uses named selections to designate parts of the mesh as simulation features, such as inflow boundaries, walls, outflow boundaries, axes of symmetry, etc.

Group-select the endmost nodes of the cylinder (only these—adjust your view accordingly and Box Select). Right-click and select Create named selection ... to open a dialog box where you can collectively label these nodes as "inlet".